
JBit-QS Getting Started, System Overview, IO Basic Operations, Support Tables, 6502

JBit QS

Getting Started

If you are new to 6502 programming, read the online
tutorial and then run some programs step by step.
From the JBit menu, select Demos and then 6502.
Study all the programs (they are very short) in the
order they are presented. First select the option Info
to get some hints about the program, then select the
option Load&Debug to start the Monitor.

Monitor Status Bar: At the right there is the
indication of the current view (CPU or MEM). In
CPU view, at the left there is the PC of the next
instruction. In MEM view, at the left there is the
current cell address.

Monitor Keys: 2, 4, 6 and 8 are the cursor keys.
1 performs 1 step. 3 performs n steps (you can select
n by using the option StepSize; default is 10). 7 goes
to the next line. 9 steps out of the current subroutine.
0 switches between CPU and MEM view. * continues
the program (you can then pause it by pressing a soft
key). # shows the video (you can then go back to
the monitor by pressing any key). In MEM view, 5
changes the value of a cell. The option Edit can be
used to change the registers of the CPU.

Editor Status Bar: At the right there is the in-
dication of the current major (NAV and EDT) and
minor modes. At the left there is the letter C if you
are on a code page or D if you are on a data page
followed by the current cell address.

Editor NAV Mode Keys: 2, 4, 6 and 8 are the
cursor keys. 5 switches to EDT mode. 1 goes to the
previous snap point, 3 to the next one. 7 sets the
mark and 0 swaps the cursor and the mark. 9 goes
to the address of the operand. * runs the program.
switches between ASM and MEM minor modes.

Editor EDT Mode Keys: * moves to the next
cell. # switches between ASM and MEM minor
modes. In MEM minor mode, 0-9 are used to enter
the decimal value of the cell. In ASM minor mode,
2-9 are used to enter the letters of the mnemonic.

Editor Example: To enter LDA #12 press 5 to
enter EDT mode, then press # to enter ASM minor
mode, then press the sequence 5 JKL, 3 DEF and 2 ABC

for L-D-A, then select the instruction LDA #n from
the list, then press 1 and 2 to enter the operand and
finally select OK to confirm the instruction.

On some phones, use @ for #.

System Overview

Neither interrupts nor BCD mode are supported.
SED, RTI or any invalid opcode cause the program to
abort. To end the program use the BRK (0) opcode.

By convention a program is a series of code pages
containing a single stream of valid instructions fol-
lowed by a series of data pages. Programs structured
in this way are said to be well-formed. JBit neither
needs nor enforces this convention, but some editing
operations (e.g. Resize) are only available on well-
formed programs.

The hexadecimal notation is cumbersome on mo-
bile phones; it is therefore common in JBit to use the
decimal notation. Absolute addresses are presented
in the non-standard page:offset notation.

The program is loaded and starts at the beginning
of page 3. Page 255 is reserved for future use. The
IO chip is mapped to page 2.

IO Basic Operations

IO registers are stated as decimal offsets relative to
page 2.

The console video memory is a 10x4 matrix of ex-
tended Latin1 characters starting from CONVIDEO and
disposed in row-major order.

CONVIDEO 40 (40 bytes)

The frame refresh is controlled by two registers:

FRMFPS 17 FRMDRAW 18

FRMFPS is the number of frames per second multi-
plied by 4 (e.g. 40, the initial value, is 10 fps). Writ-
ing into FRMDRAW causes the CPU to be suspended
until the current frame has been drawn.

Random numbers ≤ n are read from RANDOM. Writ-
ing 0 to RANDOM swaps the current sequence genera-
tor: time-based (default) or deterministic. Any other
value sets n (default is 255).

RANDOM 23

The standard KeyPresses (the ones that can be
represented by ASCII codes; usually only 0-9, # and
*) are enqueued starting from KEYBUF; the rest of the
buffer is filled with 0s. Write into KEYBUF to consume
a KeyPress. If the buffer is full when a new key is
pressed, that KeyPress is lost.

KEYBUF 24 (8 bytes)

Copyright c© 2007-2011 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit-QS Getting Started, System Overview, IO Basic Operations, Support Tables, 6502

Latin1

0 1 2 3 4 5 6 7 8 9
30 ! " # $ % & ’
40 () * + , - . / 0 1
50 2 3 4 5 6 7 8 9 : ;
60 < = > ? @ A B C D E
70 F G H I J K L M N O
80 P Q R S T U V W X Y
90 Z [\] ^ _ ‘ a b c
100 d e f g h i j k l m
110 n o p q r s t u v w
120 x y z { | } ~

Line Art

T

L R

B

128 129 130 131 132 133 134 135

136 137 138 139 140 141 142 143

1 0 0 0 B R L T

12
8 64 32 16 8 4 2 1

Conversions

0 0000 0 0 8 1000 8 128
1 0001 1 16 9 1001 9 144
2 0010 2 32 10 1010 A 160
3 0011 3 48 11 1011 B 176
4 0100 4 64 12 1100 C 192
5 0101 5 80 13 1101 D 208
6 0110 6 96 14 1110 E 224
7 0111 7 112 15 1111 F 240

6502

Operations
BRK: BReaK; in JBit, used to halt the VM.
NOP: No OPeration.
LDA, LDX, LDY: LoaD Accumulator/X/Y.
STA, STX, STY: STore Accumulator/X/Y.
INX, INY, INC: INCrement X/Y/memory.
DEX, DEY, DEC: DECrement X/Y/memory.
TAX, TAY, TXA, TYA, TSX, TXS: Transfer register.
CMP, CPX, CPY: CoMPare with accumulator/X/Y.
JMP: JuMP.
JSR: Jump to SubRoutine.
RTS: ReTurn from Subroutine.
CLC, CLV: CLear Carry/oVerflow.
SEC: SEt Carry.
BEQ, BNE: Branch if EQual/Not Equal (z flag).
BMI, BPL: Branch if MInus/PLus (n flag).
BCC, BCS: Branch if Carry Clear/Set.
BVC, BVS: Branch if oVerflow Clear/Set.
ADC: ADd (to/into accumulator) using Carry.
SBC: SuBtract (from/into accumulator) using Carry.
AND: bitwise AND (with accumulator).
ORA: bitwise inclusive OR (with Accumulator).
EOR: bitwise Exclusive OR (with accumulator).
BIT: test BITs: #6 to v flag and #7 to n flag.
ASL, LSR: Arithmetic/Logical Shift Left/Right.
ROL, ROR: ROtate Left/Right.
PHA, PLA: PusH/PuLl Accumulator.
PHP, PLP: PusH/PuLl Processor status.

Operands
#n: Constant n.
n: Cell 0:n.
n:n: Cell n:n.
n:n,X: Cell X cells after n:n.
n:n,Y: Cell Y cells after n:n.
r: Next cell + relative offset r, shown as n:n.
n,X: Cell 0:(n+X modulo 256).
n,Y: Cell 0:(n+Y modulo 256).
(n:n): Cell pointed by n:n.
(n,X): Cell pointed by 0:(n+X modulo 256).
(n),Y: Cell Y cells after cell pointed by 0:n.

Examples
TAX: Transfer (i.e. copy) Accumulator into X.
LDA #2: LoaD Accumulator with constant 2.
LDX 2: LoaD X with content of cell 0:2.
STX 2:18: STore (i.e copy) X into cell 2:18.
BCC 6: If C=0, skip (i.e. jump forward) 6 bytes.
BCC 240: If C=0, jump back 16 (i.e. 256-240) bytes.

Copyright c© 2007-2011 Emanuele Fornara JBit http://jbit.sourceforge.net/

