
JBit E1 (1) Preface, Usage, Program Layout, Subroutines, Tables

JBit E1 (1)

Preface

The E1 series will show you how to write a complete
application with JBit. While the application is trivial
by today’s standards, you will write it from scratch
in Assembly, gaining some insight about the inner
workings of many simple everyday devices. Moreover,
you will be able to use the techniques presented here
to write more complex applications.

I assume you have a good understanding of the
6502 demos included in the standard JBit distribu-
tion and some experience in writing and testing short
snippets of code with JBit.

Usage

The application is a simulation of a digital clock.

When the application starts, 12AM is shown. You
can change this value by pressing 9 and confirm it
by pressing 3. You can then change the minutes:
first the most significant digit and then the least sig-
nificant digit. When you confirm the the least sig-
nificant digit, the dots start blinking and the clock
starts keeping the time. You can switch between the
HH:MM view and the SS view by pressing 9 or change
the time again by pressing 3.

Program Layout

The first step is to choose the layout of the program.
With the current version of JBit this is an important
decision because you cannot change it later. Estimat-
ing the layout of a program can be difficult. Fortu-
nately, you can use more pages than you need and,
as long as you keep the unused pages filled with 0s,
the additional space has very limited overhead.

Here is the layout that we will use:

3C 4C 5C 6C 7C 8D 9D

T * * * E * E

The program itself uses 3 pages of code (4-6) and 1
page of data (8). We will use page 3 as the main test
area and will reserve two additional pages (7 and 9)
for further experimentations.

Subroutines

The main technique to be able to write large pro-
grams is to code and test them a piece at a time. A
subroutine is an independent block of code that can
be written and tested in isolation.

The 6502 provides two instructions to help you in
writing subroutines: JSR (Jump to SubRoutine) and
RTS (ReTurn from Subroutine). When you want to
use a subroutine (a.k.a. calling the subroutine) you
use JSR. JSR is similar to JMP, but saves the current
PC. When the subroutine has done its job, it uses
RTS to go back to the saved PC.

A subroutine can in turn call another subroutine
(a.k.a. nesting). The PC is saved on page 1, so you
can nest at most 128 calls (remember that the PC is
2 bytes wide). The offset of the next free cell on page
1 is stored in the Stack register. The Stack register
is initialized to 255, decremented by 2 on JSR and
incremented by 2 on RTS.

Here is an example of how page 1 would look like
after two nested subroutine calls:

. . . 251 252 253 254 255

. . . - 20 3 90 3

Tables

We might not be sure yet how to write the whole
application, but sooner or later we will need to be
able to write and erase three strings (AM, PM and
:). We will start from here. Beginning from the most
basic pieces that you are very likely to end up using
later on is called bottom-up programming.

The ciao demo writes a string on the display using
a series of LDA/STA pairs and thus takes 5 bytes of
code to write a single character. To make the code
shorter, we will use a data table:

D0 C0 D1 C1

AM 32 A 33 M
PM 35 P 36 M

: 14 : 24

Each string is stored as a pair of characters and
each character is stored as a pair of bytes: first its
displacement relative to CONVIDEO and then its
ASCII code. Note that the single-character string
“:” is stored as the two-character string “: ” to make
the table simpler to use. To erase the string we will
only need to use the displacements.

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (1) Preface, Usage, Program Layout, Subroutines, Tables

Listing

* 3:0 * * CODE *
0 LDX #0 TEST 3:0
2 LDA #1 VLEDDRAW 4:0
4 JSR 4:0 * DATA *
7 LDX #8 CONVIDEO 2:40
9 LDA #1 TAB-L-D0 8:0

11 JSR 4:0 TAB-L-C0 8:1
14 BRK TAB-L-D1 8:2

* 4:0 * TAB-L-C1 8:3
0 BNE 4:17 * CONSTANTS *
2 LDA #32 ASC-SPC 32
4 LDY 8:0,X DSP-AM 0
7 STA 2:40,Y DSP-DOTS 8
10 LDY 8:2,X DSP-PM 4
13 STA 2:40,Y
16 RTS
17 LDY 8:0,X
20 LDA 8:1,X
23 STA 2:40,Y
26 LDY 8:2,X
29 LDA 8:3,X
32 STA 2:40,Y
35 RTS

Type In

C 3:0
000: 162 000 169 001 032 000 004 162
008: 008 169 001 032 000 004 000 000

C 4:0
000: 208 015 169 032 188 000 008 153
008: 040 002 188 002 008 153 040 002
016: 096 188 000 008 189 001 008 153
024: 040 002 188 002 008 189 003 008
032: 153 040 002 096 000 000 000 000

D 8:0
000: 032 065 033 077 035 080 036 077
008: 014 058 024 032 000 000 000 000

Typing Instructions

Start JBit, select Editor, select 5 pages of code and
2 pages of data, select OK to confirm, select Save,
enter a name for the program and select OK.

Type in the bytes. Check often the address of the
current cell to make sure that you don’t skip any
bytes. While typing the code pages, press # once in

a while to check that what you have typed matches
the listing. Use the GoTo command to go directly to
a particular location.

While I personally never experienced any data loss,
you might want to save often. Occasionally, go to the
Store and make a backup copy of the program.

Comment

The subroutine VLEDDRAW turns ON or OFF a
Virtual LED on the display. It expects the register
X to contain which Virtual LED should be updated.
To make the code shorter the displacement of the
row relative to the start of the table is used. VLED-
DRAW uses the result of the last operation as the
status of the Virtual LED (zero means OFF and non
zero means ON).

The test code turns ON the AM and DOTS Virtual
LEDs.

Suggestions

There is no way you can learn how to write your own
programs by just reading. This series assumes you
are willing to spend some time tinkering with the
code.

Change the test code to be able to test turning a
Virtual LED OFF too. For example, you can make
the dots blink. Leverage the fact that writing 0 to
2:18 causes the CPU to be suspended until the cur-
rent frame has been drawn. The test code will be
replaced anyway, so you don’t need to revert to the
original version.

Once you have a richer test case, do some step-
by-step executions to make sure you understand how
VLEDDRAW works.

When everything is clear, try to come up with a
different way to do what VLEDDRAW does. Leave
VLEDDRAW as it is (you will need it later). Use
page 7 for your code and page 9 for your data and
change the JSR instructions to switch between the
original subroutine and yours at any time.

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (2) Binary Notation, Boolean Operations, Bitmasks

JBit E1 (2)

Binary Notation

A bit is a binary digit (i.e. 0 or 1). A byte is a pattern
of 8 bits (e.g. 00011101). Bits in a byte are identified
by their position, starting from 0 for the rightmost
one (e.g. the 5th bit from the right is called bit 4).

Bits and bytes have no meaning by themselves;
it is the programmer who gives meaning to them.
01000001 could mean “red” in a piece of code and
“A” in another piece of code. However, a lot of oper-
ations (e.g. INC) and addressing modes (e.g. n:n,X)
of the 6502 only make sense if bytes are interpreted as
integers ranging from 0 to 255. Furthermore, small
integers are familiar and useful. This is why JBit
shows bytes in this way.

So, how 01000001 and 65 relate to each other? I
spare you the theory (hint: ...b2b1b0 is 1b0 + 2b1 +
4b2 + ..., just like 237 is 1 × 7 + 10 × 3 + 100 × 2)
and I only show you a couple of practical conversion
techniques using a support table:
Decimal to Binary. Take the byte (195), find the
biggest multiple-of-16 that is not greater than the
byte (192, i.e. 1100), subtract the multiple-of-16 from
the byte (195 - 192 = 3, i.e. 0011) and join the two
results (11000011).
Binary to Decimal. Take the byte (10100110), split
it in two halves (1010 and 0110), use the multiple-
of-16 column to convert the first half (160), use the
counting column to convert the second half (6) and
add the two results (160 + 6 = 166).

0000 0 0 1000 8 128
0001 1 16 1001 9 144
0010 2 32 1010 10 160
0011 3 48 1011 11 176
0100 4 64 1100 12 192
0101 5 80 1101 13 208
0110 6 96 1110 14 224
0111 7 112 1111 15 240

Boolean Operations

Treating bytes as patterns of bits leads to an intuitive
understanding of the so called boolean operations:

01010101 AND 01010101 OR 01010101 XOR
00110011 = 00110011 = 00110011 =
-------- -------- --------
00010001 01110111 01100110

These operations are carried out on two bytes con-
sidering their corresponding bits in isolation. The
result of AND is 1 if both bits are 1, otherwise is 0.
The result of OR is 1 if at least one bit is 1, otherwise
is 0. The result of XOR is 1 if the bits are different
from each other, otherwise is 0.

The 6502 opcodes for these operations are: AND
for AND, ORA (OR with Accumulator) for OR and
EOR (Exclusive OR) for XOR. All of them operate
on the Accumulator.

As an example, to compute the value of the Accu-
mulator after this snippet of code:

LDA #58
ORA #12

convert the bytes to binary notation, do the operation
and convert the result to decimal notation:

00111010 (58) OR
00001100 (12) =

00111110 (62)

Bitmasks

One of the most common use of the boolean opera-
tions is to pack (unpack) small pieces of information
into (from) a byte.

Consider how bits 2 and 3 of the first operand are
affected by the following operations:

00111010 OR 00001100 (12) = 00111110
00111010 XOR 00001100 (12) = 00110110
00111010 AND 11110011 (243) = 00110010

The second operand is called bitmask. OR can be
used to set bits to 1, XOR to invert them (1 becomes
0 and 0 becomes 1) and AND to reset them to 0.

The decimal notations of single-bit bitmasks are
usually known by heart by assembly programmers
(1, 2, 4, 8, 16, 32, 64 and 128). Inverting a byte (i.e.
inverting all its bits) by hand to compute a bitmask
for the AND operation can be done by subtracting it
from 255.

Consider also:

01110100 AND 00001000 (8) = 00000000
01111100 AND 00001000 (8) = 00001000

AND can be used to test a single bit using BEQ
and BNE.

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (2) Binary Notation, Boolean Operations, Bitmasks

Listing

* 3:0 * * CODE *
0 LDA #8 TEST 3:0
2 STA 2:17 VLEDDRAW 4:0
5 LDA #2 VLDSDRAW 4:36
7 STA 80 * DATA *
9 LDA 80 FRMFPS 2:17

11 EOR #4 FRMDRAW 2:18
13 STA 80 * ZERO PAGE *
15 JSR 4:36 VLDS-MSK 40
18 LDA #0 TEST-TMP 80
20 STA 2:18 * CONSTANTS *
23 JMP 3:9 DSP-AM 0

* 4:36 * DSP-DOTS 8
36 STA 40 DSP-PM 4
38 LDX #0 MSK-AM 1
40 AND #1 MSK-DOTS 4
42 JSR 4:0 MSK-PM 2
45 LDX #4 TWO-FPS 8
47 LDA 40
49 AND #2
51 JSR 4:0
54 LDX #8
56 LDA 40
58 AND #4
60 JMP 4:0

Type In

C 3:0
000: 169 008 141 017 002 169 002 133
008: 080 165 080 073 004 133 080 032
016: 036 004 169 000 141 018 002 076
024: 009 003 000 000 000 000 000 000

C 4:32
032: 153 040 002 096 133 040 162 000
040: 041 001 032 000 004 162 004 165
048: 040 041 002 032 000 004 162 008
056: 165 040 041 004 076 000 004 000

Typing Notes

Start JBit, select Store, load the program and type in
the new values. If you end up with page 3 still having
some old values, you can clear them by repeatedly
pressing * in EDT mode.

Despite what we are doing here, it is usually better
to leave a few BRK (0) instructions between subrou-
tines to allow for future changes.

Comment

VLDSDRAW expects a bitmask in the Accumulator
and turns ON or OFF the individual Virtual LEDs
accordingly. First the bitmask is saved, then every
bit is isolated and tested in turn. Now you can see
why I have chosen to test if the result is not zero in
VLEDDRAW; in bottom-up programming thinking
in advance about how a subroutine will be used can
be helpful. Note the JMP at the end of the subroutine
as a faster and shorter replacement for:

60 JSR 4:0
63 RTS

The test code is composed of a setup section fol-
lowed by an infinite loop. In the setup section the
refresh rate is set to 2 frames per seconds (remem-
ber that in FRMFPS goes the FPS multiplied by 4)
and a temporary memory location is initialized with
the status of the Virtual LEDs. In every iteration of
the loop the status of the DOTS Virtual LED is in-
verted, the Virtual LEDs are drawn and the display
is updated (remember that writing 0 to FRMDRAW
suspends the CPU until the next frame is drawn).

Puzzles

Binary Notation. Look at these numbers:

00000011 (3) 00110000 (48)
00000110 (6) 01100000 (96)
00001100 (12) 11000000 (192)
00011000 (24)

How do the binary numbers change? How do the
decimal numbers change? How could you divide
11011000 by 4 without converting it to the decimal
notation?

Another boolean operation is NOT. It inverts every
bit of a byte (e.g. NOT of 01010111 is 10101000).
How could you simulate it on a 6502?
Modulo Arithmetic. Everyone knows that 8 hours
after 9AM is 5PM; after all, 9 + 8 = 17 and 17 - 12 =
5. What day of the month is 4 weeks after September
20? What happens when you use ADC to add 102
and 204 together? What time is it 26 minutes after
8:59? How do you find out? 26 + 59 - 60? Or just
26 - 1, saving one step? What happens when you use
ADC to add 102 and 255 together?

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (3) Shifting, Indirect Addressing, 7 Segment Display

JBit E1 (3)

Shifting

The 6502 provides some operations to shift every bit
of a byte by one place. The operations are: ASL
(Arithmetic Shift Left), LSR (Logical Shift Right),
ROL (ROtate Left) and ROR (ROtate Right). All
of them can operate either on the Accumulator or
on a Memory Cell. The bit that goes out of the byte
goes to the Carry. ASL and LSR fill the bit left empty
with 0. ROL and ROR fill the bit left empty with the
value of the Carry at the beginning of the operation.

Let’s assume that the Accumulator or a Memory
Cell contains the byte b7, b6, b5, b4, b3, b2, b1, b0 and
the Carry contains the bit bc, here is what happens:

Op. Acc./Mem. C
ASL b6, b5, b4, b3, b2, b1, b0, 0 b7

LSR 0, b7, b6, b5, b4, b3, b2, b1 b0

ROL b6, b5, b4, b3, b2, b1, b0, bc b7

ROR bc, b7, b6, b5, b4, b3, b2, b1 b0

Indirect Addressing

Let’s assume that Y contains 1, X contains 2 and
page 0 looks like this:

. . . 40 41 42 43 . . .

. . . 10 6 20 7 . . .

Now consider the following example:

LDA (40),Y
STA (40,X)
JMP (0:40)

The expression inside the parenthesis is used to
point to two memory cells containing an address; first
the offset and then the page.

In the example above, LDA would load the Accu-
mulator from 6:11. STA would store the Accumulator
in 7:20. JMP would jump to 6:10.

Both the (n),Y and the (n,X) addressing modes
are widely available, but note that (n),X and (n,Y)
are not available. The (n:n) addressing mode is only
available with the JMP instruction.

Indirect addressing is not used very often, but it
can be very handy. We will use it a couple of times.

7 Segment Display

I don’t want to subject you to my “English” more
than necessary, so here is a figure highlighting the
contribution of the segment b in drawing the digit 7
(bitmask 224) at offset 11:

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (3) Shifting, Indirect Addressing, 7 Segment Display

Listing

* 3:0 * * CODE *
0 LDA #238 TEST 3:0
2 LDX #4 SSEGDRAW 4:63
4 JSR 4:63 * DATA *
7 BRK TAB-S-D0 8:12
* 4:63 * TAB-S-M0 8:13

63 STX 47 TAB-S-D1 8:14
65 STA 49 TAB-S-M1 8:15
67 LDA #0 TAB-AV-D 8:40
69 TAY * ZERO PAGE *
70 LDX #6 ACCBUF 41
72 STA 40,X VPTR-LO 47
74 DEX VPTR-HI 48
75 BNE 4:72 MASK 49
77 ASL 49 * CONSTANTS *
79 BCC 4:101 ASC-SPC 32
81 LDX 8:12,Y A-DSP 4
84 LDA 8:13,Y A-MSK 238
87 ORA 41,X CHR-DOT 128
89 STA 41,X IO-HI 2
91 LDX 8:14,Y
94 LDA 8:15,Y
97 ORA 41,X
99 STA 41,X
101 INY
102 INY
103 INY
104 INY
105 CPY #28
107 BNE 4:77
109 LDA #2
111 STA 48
113 LDX #0
115 LDA 41,X
117 BEQ 4:123
119 ORA #128
121 BNE 4:125
123 LDA #32
125 LDY 8:40,X
128 STA (47),Y
130 INX
131 CPX #6
133 BNE 4:115
135 RTS

Type In

C 3:0

000: 169 238 162 004 032 063 004 000

C 4:56
056: 165 040 041 004 076 000 004 134
064: 047 133 049 169 000 168 162 006
072: 149 040 202 208 251 006 049 144
080: 020 190 012 008 185 013 008 021
088: 041 149 041 190 014 008 185 015
096: 008 021 041 149 041 200 200 200
104: 200 192 028 208 224 169 002 133
112: 048 162 000 181 041 240 004 009
120: 128 208 002 169 032 188 040 008
128: 145 047 232 224 006 208 236 096

D 8:8
008: 014 058 024 032 000 004 001 002
016: 001 008 003 001 003 008 005 001
024: 004 004 005 002 002 008 004 001
032: 000 008 002 001 002 004 003 002
040: 040 041 050 051 060 061 000 000

Comment

The subroutine SSEGDRAW draws a Virtual 7 Seg-
ment Display. It expects the register X to contain the
displacement of the top-left corner relative to the ori-
gin of the video and the Accumulator to contain the
bitmask for the LEDs. First the displacement and
the bitmask are saved and the accumulation buffer is
cleared. Then the code from 4:77 to 4:104 is repeated
7 times (4× 7 = 28). Every bit of the bitmask is iso-
lated (ASL) and tested (BCC); if the bit is set, two
cells of the accumulation buffer are “painted” (ORA)
according to the TAB-S table. After this loop the
accumulation buffer is mapped to the screen trans-
forming every cell to the appropriate character code.
If the cell is 0 an ASCII space is drawn, otherwise
the bit 7 is set to get the right JBit character code.
Note that the line art character codes are not part of
the Latin1 character set.

The test code draws a stylized “A” on the display.
SSEGDRAW is perhaps the most complex subrou-

tine of the whole application, so don’t worry if you
don’t understand it at first. Step-by-step execution
is not going to help you much if you don’t get the
main idea from the figure on the other side of this
sheet. You can complete the rest of the series with-
out understanding how SSEGDRAW works, so take
your time. Just make sure you know how to use it
by playing with the test code.

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (4) Programming Techniques, Hardware Abstraction Layer (1)

JBit E1 (4)

Programming Techniques

Bottom-Up Programming. Starting writing a bunch
of subroutines cannot lead anywhere, right? Well,
it turns out that this is often a good way to start.
When you first reason about a program you usually
find out that the concepts you are using (numbers,
score, enemy, wall, etc...) are not the ones available
to you (in Assembly basically bits and bytes). These
concepts can suggest you useful building blocks.
Top-Down Programming. Another approach is to
start with the ”big picture”. For example, you could
start with a program calling some empty subroutines
(e.g. intro, play, win and game over) and code them
later. In practice, alternating between Bottom-Up
and Top-Down can be quite effective.
Information Hiding. The less information you need
to use a building block (a.k.a. interface), the better.
Once something works, you should be able to forget
how it works (a.k.a. implementation). This allows
you to focus on part of the program. It also allows
you to define an interface, build a simplified imple-
mentation, see if it makes sense and then rewrite it
later if needed or throw it away otherwise. If you
keep the same interface, you don’t need to rewrite
the code using it. Cheap and fast prototyping with
toy building blocks is essential to foster creativity.
Abstraction Layers. Another way to limit the details
you have to consider is to group the building blocks
in layers; each layer only interacting with the layer
below and the layer above. This fits well with the
bottom-up and top-down approach, where the lowest
layers are the nearest to the machine.

Hardware Abstraction Layer (1)

We will come up with an abstraction layer that mim-
ics the hardware of a fictional digital clock. This ap-
parently contrived approach will allow you to better
understand JBit and how it compares to real devices.
It will also give you some insight on how some real
devices are programmed.

On this sheet we will start by analyzing some of
the most subtle differences.

JBit has only RAM (i.e. every memory cell can be
read and written). Part of the memory is initialized
using the program as a template, the rest is filled
with 0s. Once the program starts it can overwrite its
code or its data; in fact, you could manage quite well
without indirect addressing in JBit (just patch the
code on the fly).

On a real device a program would likely be stored
in ROM (i.e. the code and data pages of a program
could not be overwritten). The rest of the memory
(RAM) might not be initialized. Furthermore, on
some real devices the amount of RAM might be lim-
ited to a few bytes.

In JBit either the CPU or the IO chip are working,
but never together. When the CPU writes to some
particular locations of the IO chip, the CPU stops
and the IO chip starts working. When the IO chip
has finished, the CPU continues. This is why in JBit
it is important to write 0 to FRMDRAW once in a
while: to allow the IO chip to draw the display.

On a real device the CPU and the IO chip
would work together. When something happens (e.g.
100ms have passed) the IO chip notifies the CPU
sending an IRQ (Interrupt ReQuest). The CPU then
stops the normal program and calls a special routine
(the IRQ handler).

Some real devices have watchdog timers to protect
against bugs and failures. The application must write
to a location once in a while to signal that it is still
working as expected; failure to do so will cause the
device to be reset.

The goal will be to use the HAL instead of the IO
chip. The HAL will provide a watchdog timer and
will take control of the main program. The rest of
the application will be written as an IRQ handler
(a.k.a. event-driven or asynchronous programming).
Finally, we will program as if the code and the data
pages cannot be overwritten and we will not rely on
the rest of the memory being initialized with 0s.

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (4) Programming Techniques, Hardware Abstraction Layer (1)

Listing

* 3:0 * * CODE *
0 LDA #11 TEST 3:0
2 STA 10 HANDLER 3:11
4 LDA #3 HALSTART 4:136
6 STA 11 HALINIT 4:153
8 JMP 4:136 HALABORT 4:173

11 INC 2:40 HALSTEP 4:199
14 RTS * DATA *

* 4:136 * FRMDRAW 2:18
136 JSR 4:153 CONVIDEO 2:40
139 JSR 4:199 CONROW1 2:50
142 DEC 19 REGIMAGE 8:46
144 BEQ 4:173 ERRORMSG 8:66
146 LDA #0 * ZERO PAGE *
148 STA 2:18 IRQ-LO 10
151 BEQ 4:139 IRQ-HI 11
153 LDX #20 RAM-0 18
155 LDA 8:45,X WDTMR 19
158 STA 11,X ROM-VERS 30
160 DEX ROM-FREQ 31
161 BNE 4:155 SHADOW 32
163 LDA #0 * CONSTANTS *
165 LDX #5 ASC-SPC 32
167 STA 31,X VIDSIZE 40
169 DEX
170 BNE 4:167
172 RTS
173 LDX #40
175 LDA #32
177 STA 2:39,X
180 DEX
181 BNE 4:177
183 LDA 8:66,X
186 BEQ 4:194
188 STA 2:50,X
191 INX
192 BNE 4:183
194 STA 2:18
197 BEQ 4:194
199 JMP (0:10)

Type In

C 3:0
000: 169 011 133 010 169 003 133 011
008: 076 136 004 238 040 002 096 000

C 4:136
136: 032 153 004 032 199 004 198 019

144: 240 027 169 000 141 018 002 240
152: 242 162 020 189 045 008 149 011
160: 202 208 248 169 000 162 005 149
168: 031 202 208 251 096 162 040 169
176: 032 157 039 002 202 208 250 189
184: 066 008 240 006 157 050 002 232
192: 208 245 141 018 002 240 251 108
200: 010 000 000 000 000 000 000 000

D 8:48
048: 000 000 000 000 000 100 252 096
056: 218 242 102 182 190 224 254 246
064: 001 010 073 078 084 046 032 069
072: 082 082 079 082 000 000 000 000

Comment

The HAL has 22 registers ranging from address 10 to
address 31 on page 0. IRQ-LO and IRQ-HI contain
the address of the IRQ handler. RAM-0 is a single
cell of RAM initialized with 0. WDTMR is a counter
initialized to 100 and decremented by 1 every time
the IRQ handler is called. ROM-VERS contains the
version of the HAL. ROM-FREQ contains how many
times per seconds the IRQ handler is called (e.g. 10
Hz). The other registers will be described on the next
sheet.

Jumping to HALSTART starts the HAL. The HAL
first calls HALINIT. HALINIT initializes the reg-
isters (except IRQ-LO and IRQ-HI) using a table
(REGIMAGE) and clears a buffer (SHADOW, de-
scribed on the next sheet).

After HALINIT returns, the main loop begins.
The IRQ handler is invoked using indirect address-
ing (HALSTEP) and WDTMR is decremented. If
WDTMR reaches 0 the HAL shows an error message
and stops (HALABORT) otherwise the display is up-
dated (thus waiting 100ms) and another iteration can
begin.

The test code sets the IRQ handler (HANDLER)
and starts the HAL. The test handler updates a char-
acter on the display. Since it fails to reset WDTMR
to 100, after a while the HAL will stop.

Note that the handler is supposed to be short and
quick. Programming in this way can be tricky; you
may have to split the work to do in stages and keep
track of the progress (RAM-0 can be very handy to
recognize the first stage). Try to write a simple pro-
gram in this way (e.g. loop2).

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (5) Branching, Hardware Abstraction Layer (2)

JBit E1 (5)

Branching

Here is a quick recap about branching. Branch oper-
ations add an offset to the PC if a status flag has a
particular value.

Set Clear
Zero (Z) BEQ BNE

Negative (N) BMI BPL
Carry (C) BCS BCC

Overflow (V) BVS BVC

Zero. Modified by most operations: Load, Increment,
Decrement, Addition, Subtraction, OR, AND, XOR,
Comparison and Shifting. Set when the result is 0,
cleared otherwise.
Negative. Modified by most operations, just like the
Zero flag. Set or cleared depending on bit 7 of the
result. In other words, set when the result is greater
than or equal to 128, reset otherwise. 255, 254, ...128
are considered to be negative: -1, -2, ...-128.
Carry. Modified by Addition, Subtraction, Compar-
ison and Shifting. Carry is used as an “Inverse Bor-
row” in subtractions (i.e. must be set before the op-
eration and is reset if a borrow has occurred).
Overflow. Modified by Addition, Subtraction and
BIT. During additions and subtractions the overflow
is used to check if the result is outsize the range,
please refer to other sources for more information.
The BIT operation sets or clears the Overflow flag
depending on bit 6 of a memory location.
Offset. To compute the offset, start with the oper-
ation after the branch (0) and count the number of
bytes to jump forward (1, 2, 3...) or backward (255,
254, 253...). Note that, unlike JSR and JMP, the ad-
dress to jump to is encoded as the number of bytes
to skip, making the code easy to relocate. For short
jumps it is common to use a branch using a flag with
a known value (or CLV+BVC).

In the following example, BEQ 0 has no effect and
BEQ 254 enters an infinite loop if 2:24 contains 0 (the
Zero flag is set).

251 (-5) LDA 2:24
254 (-2) BEQ ?
0 (0) STX 2:24
3 (3) CLC

Hardware Abstraction Layer (2)

The last part of the HAL is about the handling of
the Input/Output. First of all a disclaimer: I am
not a programmer of embedded systems. The follow-
ing considerations are, to the best of my knowledge,
reasonable.

On a real device two buttons are likely to be
mapped to two bits (e.g. 5 and 6) of an input reg-
ister. 1 could mean pressed and 0 released (but it
could well be the opposite).

Unfortunately, JBit does not provide a low level ac-
cess to the keypad, so we opt for a simple mapping of
the 8-byte KEYBUF to a single register (IN-KEYS).
In other words, we assume that a driver is monitor-
ing the buttons looking for bit transitions (e.g. if
bit 5 changed from 0 to 1 since the last time it has
been checked, MODE has been pressed) and posting
events (0: nothing has happened, 1: SET has been
pressed, 2: MODE has been pressed) to IN-KEYS
accordingly.

To keep the number of output registers down, on
a real device some sort of multiplexing is likely to be
in place. One register would act as a selector and
another would act as the bitmask for the selected led
group. The CPU would have to keep refreshing every
led group in turn.

Again, we opt for a simpler design. The HAL will
provide 5 output registers: 4 bitmasks for the 4 digits
and 1 bitmask for the other leds. 10 ROM registers
will provide the standard bitmasks for the digits.

It is my understanding that is increasingly com-
mon to have intelligent I/O chips performing com-
plex functions, so the approach we take here might
not be totally unrealistic.

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (5) Branching, Hardware Abstraction Layer (2)

Listing

* 3:0 * * CODE *
0 LDA #11 TEST 3:0
2 STA 10 HANDLER 3:11
4 LDA #3 VLDSDRAW 4:36
6 STA 11 SSEGDRAW 4:63
8 JMP 4:136 HALSTART 4:136

11 LDA #100 HALSTEP 4:199
13 STA 19 * DATA *
15 LDX 17 KEYBUF 2:24
17 BEQ 3:23 DSP-DGTS 8:77
19 LDA 20,X * ZERO PAGE *
21 STA 13 IRQ-LO 10
23 RTS IRQ-HI 11

* 4:199 * OUT-7S-0 12
199 LDA 2:24 OUT-7S-1 13
202 BEQ 4:227 OUT-7S-2 14
204 CMP #51 OUT-7S-3 15
206 BNE 4:212 OUT-LEDS 16
208 LDA #1 IN-KEYS 17
210 BNE 4:222 RAM-0 18
212 CMP #57 WDTMR 19
214 BNE 4:220 ROM-7S-0 20
216 LDA #2 ROM-7S-1 21
218 BNE 4:222 ROM-7S-2 22
220 LDA #0 ROM-7S-3 23
222 LDX #1 ROM-7S-4 24
224 STX 2:24 ROM-7S-5 25
227 STA 17 ROM-7S-6 26
229 JSR 5:16 ROM-7S-7 27
232 LDA #4 ROM-7S-8 28
234 STA 50 ROM-7S-9 29
236 LDX 50 ROM-VERS 30
238 LDA 12,X ROM-FREQ 31
240 CMP 32,X SHADOW 32
242 BEQ 5:11 CURR-REG 50
244 STA 32,X CURR-VAL 51
246 STA 51 * CONSTANTS *
248 CPX #4 ASC-3 51
250 BNE 5:2 ASC-9 57
252 JSR 4:36 KEY-MODE 2
255 JMP 5:11 KEY-SET 1
2 LDA 8:77,X MSK-AM 1
5 TAX MSK-DOTS 4
6 LDA 51 MSK-PM 2
8 JSR 4:63 REG-LEDS 4
11 DEC 50
13 BPL 4:236
15 RTS

16 JMP (0:10)

Type In

C 3:0
000: 169 011 133 010 169 003 133 011
008: 076 136 004 169 100 133 019 166
016: 017 240 004 181 020 133 013 096

C 4:192
192: 208 245 141 018 002 240 251 173
200: 024 002 240 023 201 051 208 004
208: 169 001 208 010 201 057 208 004
216: 169 002 208 002 169 000 162 001
224: 142 024 002 133 017 032 016 005
232: 169 004 133 050 166 050 181 012
240: 213 032 240 023 149 032 133 051
248: 224 004 208 006 032 036 004 076
000: 011 005 189 077 008 170 165 051
008: 032 063 004 198 050 016 221 096
016: 108 010 000 000 000 000 000 000

D 8:72
072: 082 082 079 082 000 000 002 005
080: 007 000 000 000 000 000 000 000

Comment

HALSTEP is rewritten to handle Input/Output.
Before calling the IRQ Handler, KEYBUF is

mapped to IN-KEYS. This code is a bit unstructured
so keeping in mind what should be done is helpful. If
a KeyPress is available, 1 should be written to KEY-
BUF to consume it. Keys 3 and 9 should be mapped
to 1 and 2. Any other key should be mapped to 0.

After calling the IRQ Handler, the display is up-
dated. A buffer (SHADOW, 5 bytes) is used to
store the old values of the OUT registers. Every
OUT register is checked in turn. If it differs from
its shadow, the shadow is updated and the relevant
subroutine (VLDSDRAW or SSEGDRAW) is called.
Since these subroutines might change the CPU reg-
isters, some support cells (CURR-REG and CURR-
VAL) are used.

The test handler checks if a key if pressed and up-
dates the second 7 Segment Display accordingly. It
also resets the watchdog timer.

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (6) ???, The Clock

JBit E1 (6)

???

To be written...

The Clock

...
The model stores the current time of the day.

Choosing how to represent the model can be very
tricky. Execution speed and easy of programming
can be influenced heavily by this choice. It is not
uncommon to gain in one section of the program and
lose in another. At the end I have chosen the follow-
ing scheme:

HH ranges from 0 to 23. Instead of using a single
MM field ranging from 0 to 59, two fields are used:
M1 ranging from 0 to 5 and M0 ranging from 0 to
9. Same for S1 and S0. TCKS ranges from 0 to
ROM-FREQ - 1 (e.g. 0 to 49 for a 50Hz HAL).

Here is how 9:53:26.4PM would be represented on a
50Hz HAL:

TCKS S0 S1 M0 M1 HH
20 6 2 3 5 21

The valid values for the STATUS field are: START
(i.e. the clock is not yet initialized), SETHH /
SETM1 / SETM0 (i.e. the clock is being set) and
HHMM / SS (i.e. the clock is ticking).

STATUS will be stored in RAM0 and 0 will be used
for START. From now on, RAM0 will be referenced
as STATUS.

...

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (6) ???, The Clock

Listing

* 3:0 * * CODE *
0 LDA #11 TEST 3:0
2 STA 10 HANDLER 3:11
4 LDA #3 HALSTART 4:136
6 STA 11 MDL-INIT 5:19
8 JMP 4:136 MDL-GO 5:28

11 LDA 18 MDL-TICK 5:37
13 BNE 3:24 * ZERO PAGE *
15 JSR 5:19 MDL-TCKS 1
18 JSR 5:28 MDL-S0 2
21 INC 18 MDL-S1 3
23 RTS MDL-M0 4
24 JSR 5:37 MDL-M1 5
27 LDX 2 MDL-HH 6
29 LDA 20,X IRQ-LO 10
31 STA 15 IRQ-HI 11
33 RTS OUT-7S-3 15

* 5:19 * STATUS 18
19 LDA #0 ROM-7S-0 20
21 STA 4 ROM-FREQ 31
23 STA 5
25 STA 6
27 RTS
28 LDA #0
30 STA 1
32 STA 2
34 STA 3
36 RTS
37 LDX #0
39 INC 1
41 LDA 1
43 CMP 31
45 BNE 5:99
47 STX 1
49 INC 2
51 LDA 2
53 CMP #10
55 BNE 5:99
57 STX 2
59 INC 3
61 LDA 3
63 CMP #6
65 BNE 5:99
67 STX 3
69 INC 4
71 LDA 4
73 CMP #10
75 BNE 5:99

77 STX 4
79 INC 5
81 LDA 5
83 CMP #6
85 BNE 5:99
87 STX 5
89 INC 6
91 LDA 6
93 CMP #24
95 BNE 5:99
97 STX 6
99 RTS

Type In

C 3:0
000: 169 011 133 010 169 003 133 011
008: 076 136 004 165 018 208 009 032
016: 019 005 032 028 005 230 018 096
024: 032 037 005 166 002 181 020 133
032: 015 096 000 000 000 000 000 000

C 5:16
016: 108 010 000 169 000 133 004 133
024: 005 133 006 096 169 000 133 001
032: 133 002 133 003 096 162 000 230
040: 001 165 001 197 031 208 052 134
048: 001 230 002 165 002 201 010 208
056: 042 134 002 230 003 165 003 201
064: 006 208 032 134 003 230 004 165
072: 004 201 010 208 022 134 004 230
080: 005 165 005 201 006 208 012 134
088: 005 230 006 165 006 201 024 208
096: 002 134 006 096 000 000 000 000

Comment

The subroutines MDL-INIT and MDL-GO initialize
the model. The subroutine MDL-TICK increments
MDL-TCKS. If MDL-TCKS reaches the frequency
of the IRQ (ROM-FREQ), this means that a whole
second has elapsed; MDL-TCKS is cleared and MDL-
S0 is incremented. If necessary, the process (reset
and increment) is applied to the other fields (MDL-
S0, MDL-S1, MDL-M0, MDL-M1, MDL-HH) using
the appropriate thresholds (10, 6, 10, 6, 24).

The first time the test handler is invoked, the
model is initialized and STATUS is updated to
1. During normal operation, the model is updated
(MDL-TICK) and the MDL-S0 field is then used to
drive the last digit of the display (OUT-7S-3).

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (7) The Clock (continued)

JBit E1 (7)

Listing

* 3:0 * * CODE *
0 LDA #11 TEST 3:0
2 STA 10 HANDLER 3:11
4 LDA #3 HALSTART 4:136
6 STA 11 MDL-INIT 5:19
8 JMP 4:136 MDL-EDIT 5:100

11 LDA #100 UPD-VIEW 5:121
13 STA 19 UV-SETHH 5:146
15 LDA 18 UV-SETM1 5:153
17 BEQ 3:47 UV-SETM0 5:158
19 LDA 17 UV-HHMM 5:161
21 CMP #1 UV-SS 5:171
23 BEQ 3:30 UV-HHLDS 5:190
25 CMP #2 UV-MIN1 6:5
27 BEQ 3:41 UV-MIN0 6:12
29 RTS * DATA *
30 INC 18 TAB-EFLD 8:81
32 LDA 18 TAB-EMAX 8:84
34 CMP #4 * ZERO PAGE *
36 BEQ 3:50 MDL-TCKS 1
38 JMP 5:121 MDL-S0 2
41 JSR 5:100 MDL-S1 3
44 JMP 5:121 MDL-M0 4
47 JSR 5:19 MDL-M1 5
50 LDA #1 MDL-HH 6
52 STA 18 IRQ-LO 10
54 JMP 5:121 IRQ-HI 11

* 5:100 * OUT-7S-0 12
100 LDY 18 OUT-7S-1 13
102 DEY OUT-7S-2 14
103 LDA 8:81,Y OUT-7S-3 15
106 TAX OUT-LEDS 16
107 INC 0,X IN-KEYS 17
109 LDA 0,X STATUS 18
111 CMP 8:84,Y WDTMR 19
114 BNE 5:120 ROM-7S-0 20
116 LDA #0 ROM-7S-1 21
118 STA 0,X ROM-7S-2 22
120 RTS ROM-FREQ 31
121 LDX #0 * CONSTANTS *
123 LDA 18 KEY-MODE 2
125 CMP #1 KEY-SET 1
127 BEQ 5:146 MSK-AM 1
129 CMP #2 MSK-DOTS 4
131 BEQ 5:153 MSK-PM 2
133 CMP #3 ST-HHMM 4

135 BEQ 5:158 ST-SETHH 1
137 CMP #4 ST-SETM0 3
139 BEQ 5:161 ST-SETM1 2
141 CMP #5 ST-SS 5
143 BEQ 5:171 ST-START 0
145 RTS
146 STX 14
148 STX 15
150 JMP 5:190
153 STX 15
155 JMP 6:5
158 JMP 6:12
161 JSR 5:190
164 JSR 6:5
167 JSR 6:12
170 RTS
171 STX 12
173 STX 13
175 STX 16
177 LDX 3
179 LDA 20,X
181 STA 14
183 LDX 2
185 LDA 20,X
187 STA 15
189 RTS
190 STX 12
192 LDY #4
194 LDA 18
196 CMP #4
198 BNE 5:209
200 LDA 31
202 LSR
203 CMP 1
205 BPL 5:209
207 LDY #0
209 TYA
210 LDY 6
212 CPY #12
214 BMI 5:228
216 ORA #2
218 STA 16
220 LDA 6
222 SEC
223 SBC #12
225 JMP 5:234
228 ORA #1
230 STA 16
232 LDA 6

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (7) The Clock (continued)

234 BEQ 5:246
236 CMP #10
238 BPL 5:248
240 TAX
241 LDA 20,X
243 STA 13
245 RTS
246 LDA #12
248 SEC
249 SBC #10
251 TAX
252 LDA 20,X
254 STA 13
0 LDA 21
2 STA 12
4 RTS
5 LDX 5
7 LDA 20,X
9 STA 14

11 RTS
12 LDX 4
14 LDA 20,X
16 STA 15
18 RTS

Type In

C 3:0
000: 169 011 133 010 169 003 133 011
008: 076 136 004 169 100 133 019 165
016: 018 240 028 165 017 201 001 240
024: 005 201 002 240 012 096 230 018
032: 165 018 201 004 240 012 076 121
040: 005 032 100 005 076 121 005 032
048: 019 005 169 001 133 018 076 121
056: 005 000 000 000 000 000 000 000

C 5:96
096: 002 134 006 096 164 018 136 185
104: 081 008 170 246 000 181 000 217
112: 084 008 208 004 169 000 149 000
120: 096 162 000 165 018 201 001 240
128: 017 201 002 240 020 201 003 240
136: 021 201 004 240 020 201 005 240
144: 026 096 134 014 134 015 076 190
152: 005 134 015 076 005 006 076 012
160: 006 032 190 005 032 005 006 032
168: 012 006 096 134 012 134 013 134
176: 016 166 003 181 020 133 014 166
184: 002 181 020 133 015 096 134 012

192: 160 004 165 018 201 004 208 009
200: 165 031 074 197 001 016 002 160
208: 000 152 164 006 192 012 048 012
216: 009 002 133 016 165 006 056 233
224: 012 076 234 005 009 001 133 016
232: 165 006 240 010 201 010 016 008
240: 170 181 020 133 013 096 169 012
248: 056 233 010 170 181 020 133 013
000: 165 021 133 012 096 166 005 181
008: 020 133 014 096 166 004 181 020
016: 133 015 096 000 000 000 000 000

D 8:80
080: 007 006 005 004 024 006 010 000

Comment

The subroutine MDL-EDIT increments a field and if
the field reaches a threshold (e.g. 24) it resets it. The
fields to edit and the relevant thresholds are stored
in two tables (TAB-EFLD and TAB-EMAX, indexed
by STATUS; only ST-SETxx are valid).

The subroutine UPD-VIEW is long, but most of it
is simple. First STATUS is checked and the control is
transfered to the relevant code. See if you can under-
stand all the cases; starting with UV-SS (the easiest
case, not further decomposed) and ending with UV-
HHLDS (the hardest section of code). Mostly, it is a
matter of using some fields of the model to drive the
output registers accordingly.

UV-HHLDS drives the first two digits and the leds
according to MDL-HH, MDL-TCKS and STATUS.
First the status of the DOTS led is is computed; it is
turned off only if STATUS is ST-HHMM and MDL-
TCKS is less than half ROM-FREQ, causing blink-
ing. Then the MDL-HH field is mapped from the
0-23 range to the 0-11 range, setting the AM/PM led
accordingly. Finally the HH digits are computed. For
values less than 10, the second digit is ready available
(the first digit was previously cleared). For other val-
ues, the digit is computed by subtracting 10. Note
that 0 is mapped to 12.

The test handler reacts to the input keys. When
KEY-SET is pressed, the STATUS cycles through
ST-SETHH (the initial value), ST-SETM1 and ST-
SETM0. When KEY-MODE is pressed, MDL-EDIT
is called. At the end of any interrupt, UPD-VIEW is
called.

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (8) Finite State Machines, Conclusion

JBit E1 (8)

Finite State Machines

You might be tempted to start writing the controller
using lots of comparisons and branchings. This is an
intuitive approach, but often results in code that is
difficult to read. It is also easy to miss a case.

A more ordered approach is to use Finite State
Machines. FSMs come from parsing technology, but
they are used in other contexts as well.

You start with a State Transition Diagram that
shows how the status changes when a given input
value is received:

Every state must be included and every input value
must be handled for each state. It is far easier to
make sure of that with a diagram than with several
pages of code. The initial state is usually marked.

Once you have checked the diagram, you can
rewrite it as a State Transition Table:

0 SET MODE
START SETHH SETHH SETHH
SETHH SETHH SETM1 SETHH
SETM1 SETM1 SETM0 SETM1
SETM0 SETM0 HHMM SETM0
HHMM HHMM SETHH SS

SS SS SETHH HHMM

After a bit of practice, you should even be able
to read and write a State Transition Table without
using a State Transition Diagram.

A similar approach can also be used to describe
how the model is modified:

0 SET MODE
START INIT INIT INIT
SETHH - - EDIT
SETM1 - - EDIT
SETM0 - GO EDIT
HHMM TICK - TICK

SS TICK - TICK

Conclusion

As the name of the series implies, there might be
other serieses in the future, but in my opinion this
will always be the JBit tutorial. Once you master
the content of this series and you are able to write a
similar program on your own, you might even want
to consider if JBit has already given you the best it
has to offer. Here are some suggestions about where
to go from here:
6502. Fill the blanks left in this series (e.g. binary
numbers, stack, overflow, interrupts, etc...).
MacroAssembler. Use a MacroAssembler to write a
program on your PC and pack it into a MIDlet. I sug-
gest cc65. Understanding the cc65 toolchain (config-
uration file, assembler and linker) might seem daunt-
ing at first, but eventually it will make sense and will
easy the transition to the GCC toolchain. cc65 will
also easy the transition to C (see below).
IO Chip. Write a simple game. Unfortunately, at the
time of this writing the documentation of the IO chip
is lacking and you are pretty much left on your own.
Looking at the demo programs might help.
Assembly and Computer Architecture. Learn a mod-
ern 32/64 bit Assembly. There is usually no need to
be able to write programs with it, but some concepts
are good to know (e.g. branch prediction, cache,
memory models, etc...).
C Language. While C is now a niche language, it
is still very useful. The syntax of the language (the
hardest part for a beginner) is a sort of lingua franca
and is the basis of some modern languages (e.g. Java,
C# and JavaScript). The rest of the language is not
too hard if you already know Assembly; C is some-
times called “Portable Assembly” for a reason.
Software Engineering. Programming Techniques are
only hinted here. Read a good book on Software
Engineering for a better introduction.

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

JBit E1 (8) Finite State Machines, Conclusion

Listing

* 3:0 * * CODE *
0 JMP 6:19 BOOT 3:0
* 6:19 * HALSTART 4:136

19 LDA #31 MDL-INIT 5:19
21 STA 10 MDL-GO 5:28
23 LDA #6 MDL-TICK 5:37
25 STA 11 MDL-EDIT 5:100
27 JMP 4:136 UPD-VIEW 5:121
30 RTS MAIN 6:19
31 LDA #100 NO-FUNC 6:30
33 STA 19 HANDLER 6:31
35 CLC * DATA *
36 LDA 18 TAB-F-LO 8:87
38 ADC 18 TAB-F-HI 8:105
40 ADC 18 TAB-STTR 8:123
42 ADC 17 * ZERO PAGE *
44 STA 52 IRQ-LO 10
46 LDX 52 IRQ-HI 11
48 LDA 8:87,X IN-KEYS 17
51 STA 53 STATUS 18
53 LDA 8:105,X WDTMR 19
56 STA 54 OFFSET 52
58 JSR 6:71 TMP-F-LO 53
61 LDX 52 TMP-F-HI 54
63 LDA 8:123,X * CONSTANTS *
66 STA 18 ST-HHMM 4
68 JMP 5:121 ST-SETHH 1
71 JMP (0:53) ST-SETM0 3

ST-SETM1 2
ST-SS 5

Type In

C 3:0
000: 076 019 006 000 000 000 000 000

C 6:16
016: 133 015 096 169 031 133 010 169
024: 006 133 011 076 136 004 096 169
032: 100 133 019 024 165 018 101 018
040: 101 018 101 017 133 052 166 052
048: 189 087 008 133 053 189 105 008
056: 133 054 032 071 006 166 052 189
064: 123 008 133 018 076 121 005 108
072: 053 000 000 000 000 000 000 000

D 8:80
080: 007 006 005 004 024 006 010 019
088: 019 019 030 030 100 030 030 100

096: 030 028 100 037 030 037 037 030
104: 037 005 005 005 006 006 005 006
112: 006 005 006 005 005 005 006 005
120: 005 006 005 001 001 001 001 002
128: 001 002 003 002 003 004 003 004
136: 001 005 005 001 004 000 000 000

Comment

The boot code jumps to the main code. The main
code registers the IRQ Handler and starts the HAL.
The handler resets the watchdog timer, computes the
offset of the lookup tables, updates the model, up-
dates the status and updates the view.

The logic of the controller is encoded in three ta-
bles: TAB-F-LO and TAB-F-HI for the model tran-
sition and TAB-STTR for the state transition. The
tables are stored in row major order (i.e. first the
first row from left to right, then the second row and
so on).

The offset is computed using the following formula:
3× status+ input. Since the 6502 has no multiplica-
tion, the equivalent: status+status+status+ input
is computed. If the formula was more complex (e.g.
7 inputs), a lookup table could have been used to
compute the multiplication.

Copyright c© 2007 Emanuele Fornara JBit http://jbit.sourceforge.net/

